VESTNIK
Bashkirskogo universiteta

RUSSIAN
ISSN 1998-4812

Archive | Volume 18, 2013, No. 1.

PROTECTIVE AND REGULATORY ROLE OF ASCORBATE ON WHEAT PLANTS UNDER HEAVY METAL INFLUENCE

Vestnik Bashkirskogo Universiteta. 2013. Vol. 18. No. 1. Pp. 63-66.
Enikeev A. R.
Bashkir State University
32 Zaki Validi Street, 450074 Ufa, Republic of Bashkortostan, Russia.
Email: enikeev.aleksandr@mail.ru
Usmanov I. Yu.
Bashkir State University
32 Zaki Validi Street, 450074 Ufa, Republic of Bashkortostan, Russia.
Rakhmankulova Z. F.
K. A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences
35 Botanicheskaya Street, 127276 Moscow, Russia.
Email: zulfirar@mail.ru

Abstract

The influence of exogenous ascorbate (Asc) on wheat plants Triticum aestivum L. exposed by the increased concentration of heavy metals (cadmium Сd) has been studied. Сadmium causes a decrease in growth values, facilitates a sharp decline of the energetic balance and evolves the oxidative stress. Ascorbate increased the morphometric parameters, stabilized an energetic balance and decreased the lipid peroxidation rate. A positive correlation between changes of energetic (R/Pg) and redox balance under cadmium toxic conditions and ascorbate protective effect was identified. The role of ascorbate in regulating the energetic exchange under oxidative stress conditions is discussed.

Keywords

  • • Triticum aestivum L
  • • Triticum aestivum L
  • • photosynthesis
  • • respiration
  • • ascorbate
  • • cadmium
  • • oxidative stress

References

  1. Lijuna L., Xuemeia L., Yapinga G., Enbo M. Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae) // Environ Toxicol Pharmacol. 2005. V. 20. №3. P. 412–416.
  2. Foyer C. H., Noctor G. Ascorbate and glutathione: keeping active oxygen under control // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998. V. 49. Р. 249–279.
  3. Rodríguez-Serrano M., Romero-Puertas M. C., Pazmiño D. M., Testillano P. S., Risueño M. C., del Río L. A., Sandalio L. M. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium // Plant Physiol. 2009. T. 150. №1. P. 229–243.
  4. Paradiso A., Berardino R., Pinto M. C., Toppi L. S., Storelli M. M., Tommasi F., Gara L. Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants // Plant Cell Physiol. 2008. V. 49. P. 362.
  5. Horemans N., Raeymaekers T., Beek K.V., Nowocin A., Blust R., Broos K., Cuypers A., Vangronsveld J., Guisez Y. Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium // J. Exp. Bot. 2007. V. 58. P. 4307–4017.
  6. Paradiso A., Berardino R., Pinto M. C., Toppi L. S., Storelli M. M., Tommasi F., Gara L. Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants // Plant Cell Physiol. 2008. V. 49. P. 362–374.
  7. Keck R. W. Cadmium alteration of root physiology and potassium ion fluxes // Plant Physiology. 1978. V. 62. №1. P. 94.
  8. Sandalio L. M., Dalurzo H.C., Gómez M., Romero-Puertas M. C., Río L. A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants // J. Exp. Botany. 2001. V. 52. P. 2115–2126.
  9. Arora A., Sairam R. K., Srivastava G. C. Oxidative stress and antioxidative system in plants // Current Science. 2002. V. 82. P. 1227–1238.
  10. Gill S. S., Tuteja N. Reactive oxygen species and antioxidant machinery in Abiotic stress tolerance in crop plants // Plant Physiol. Biochem. 2010. V.48. P. 909– 930.
  11. Blokhina O., Virilainen E., Fagerstedt K. V. Antioxidants, oxidative damage and oxygen deprivation stress // Annals of Botany. 2003. V. 91. P.179–194.
  12. Demirevska-Kepova K., Simova-Stoilova L. , Stoyanova Z., Feller U. Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species // J. Plant Nutrition. 2006. V. 29. P. 451–468.
  13. Balestrasse K. B., Gardey L., Gallego S. M., Tomaro M. L. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress // Aust. J. Plant Physiol. 2001. V. 28. P. 497–504.
  14. Балахнина Т. И., Кособрюхов А. А., Иванов А. А., Креславский В. Д. Влияние кадмия на CO2-газообмен, переменную флуоресценцию хлорофилла и уровень антиоксидантных ферментов в листьях гороха // Физиология растений. 2005. Т. 52. С. 21–27.
  15. Гавриленко В. Ф., Ладыгина М. Е., Хандобина Л. М. Определение количественных и качественных параметров дыхания // Большой практикум по физиологии растений. М.: Высш шк., 1975. C. 251.
  16. Heath R. L., Packer L. Photoperoxidation in isolated chloroplasts: II. Role of electron transfer // Arch. Biochem Biophys. 1968. V. 125. №3. Pp. 850–857.
  17. Гильванова И. Р., Еникеев А. Р., Степанов С. Ю., Рахманкулова З.Ф. Участие салициловой кислоты и оксида азота в защитных реакциях растений пшеницы при действии тяжелых металлов // Прикладная биохимия и микробиология. 2012. Т. 48. №1. С. 103.
  18. Рахманкулова З. Ф. Энергетический баланс целого растения в норме и при неблагоприятных внешних условиях // Журн. общ. биологии. 2002. Т. 63. №3. С. 239–248.
  19. Рахманкулова З. Ф. Уровни регуляции энергетического обмена в растениях // Вестник Башкирского университета. 2009. Т. 14. №3(I). С. 1141–1154.
  20. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction // Annual Review of Plant Biology. 2004. V. 55. Р. 373–399.
  21. Foyer C. H., Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses // Plant Cell. 2005. T. 17. №7. Р. 1866–1875.