VESTNIK
Bashkirskogo universiteta

RUSSIAN
ISSN 1998-4812

Archive | Volume 18, 2013, No. 1.

COLLAPSE OF A CAVITATION BUBBLE IN FLUID NEAR RIGID WALL

Vestnik Bashkirskogo Universiteta. 2013. Vol. 18. No. 1. Pp. 15-21.
Aganin A. A.
Institute of Mechanics and Engineering Kazan Scientific Centre of the Russian Academy of Sciences
2/31 Lobachevsky Street, 420111 Kazan, Republic of Tatarstan, Russia.
Ilgamov M. A.
Institute of Mechanics and Engineering Kazan Scientific Centre of the Russian Academy of Sciences; Institute of Mechanics Ufa Scientific Centre of the Russian Academy of Sciences
2/31 Lobachevsky Street, 420111 Kazan, Republic of Tatarstan, Russia; 71 Prospekt Oktyabrya, 450054 Ufa, Republic of Bashkortostan, Russia.
Email: ilgamov@anrb.ru
Kosolapova L. A.
Institute of Mechanics and Engineering Kazan Scientific Centre of the Russian Academy of Sciences
2/31 Lobachevsky Street, 420111 Kazan, Republic of Tatarstan, Russia.
Email: kosolapova@kfti.knc.ru
Malakhov V. G.
Institute of Mechanics and Engineering Kazan Scientific Centre of the Russian Academy of Sciences
2/31 Lobachevsky Street, 420111 Kazan, Republic of Tatarstan, Russia.

Abstract

Dynamics of an axisymmetric cavitation bubble during its collapse in the liquid near a plane rigid wall up to the moment of its destruction (loss of simple connectedness) has been considered. Deformation and displacement of the bubble surface and changes in the liquid velocity are calculated by the Euler scheme using the boundary element method. Dependence of the features of the collapse on the distance of the bubble from the wall and the initial distortion of its spherical shape is investigated. In the case of initial ellipsoidal deviations of the bubble shape from the spherical one, the range of values of the ratio of semi-axes for which a cumulative jet directed perpendicularly to the wall is formed on the bubble surface is determined.

Keywords

  • • cavitation bubble
  • • liquid flow potential
  • • boundary element method

References

  1. Blake J. R., Taib B. B., Doherty G. // J. Fluid Mech. 1986. V. 170. P. 479–497.
  2. Blake J. R., Gibson D. C. // A. Rev. Fluid Mech. 1987. V.19. P. 99–123.
  3. Zhang Z. Y., Zhang H. S. // Physical Review E. 2004. V. 70. 056310.
  4. Blake J. R., Hooton M. C., Robinson P. B. and Tong R. P. // Phil. Trans. R. Soc. Lond. A. 1997. V. 355. P. 537–550.
  5. Yuan H., Prosperetti A. // Phys. Fluids. 1997. V. 9. P. 127–142.
  6. Tsiglifis K., Pelekasis N. // Physics of Fluids. 2005. V. 17. P. 1–18.
  7. Popinet S., Zaleski S. // J. Fluid Mech. 2002. V. 464. P. 137–163.
  8. Shervani-Tabar M. T. // PhD Thesis, 1995. University of Wollongong, Wollongong, Australia.
  9. Войнов О. В., Войнов В. В. // ДАН СССР. 1976. Т. 227. №1. С. 63–66.
  10. Longuet-Higgins M. S., Oguz H. N. // Phil. Trans. R. Soc. Lond. A. 1997. V. 355. P. 625–639.
  11. Войнов О. В., Войнов В. В. // ДАН СССР. 1975. Т. 221. №3. С. 559–562.
  12. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов М.: Мир, 1987. 524 с.
  13. Best J. P., Kucera A. // J. Fluid Mech. 1992. V. 245. P. 137–154.
  14. Wang Q. X., Yeo K. S., Khoo B. C., Lam K. Y. // Computers and Fluids. 1996. V. 25. N. 7. P. 607–628.
  15. Crum L. A. // J. Physique. 1979. V. 40. C. 285–288.