VESTNIK
Bashkirskogo universiteta

RUSSIAN
ISSN 1998-4812

Archive | Volume 20, 2015, No. 3.

ON FINITE DIFFERENCE METHOD OF SOLVING IMPERFECT CONTACT DIRICHLET’S PROBLEM FOR NON-LINEAR ELLIPTIC EQUATIONS

Vestnik Bashkirskogo Universiteta. 2015. Vol. 20. No. 3. Pp. 795-806.
Manapova A. R.
Bashkir State University
32 Zaki Validi St., 450076 Ufa, Republic of Bashkortostan, Russia.
Email: aygulrm@mail.ru

Abstract

The present work is devoted to computational aspects of solving non-linear boundary value problems for elliptic equations in inhomogeneous anisotropic media with discontinuous coefficients and a solution, where imperfect-contact matching condition is given at the inner boundary between media. I.e., the problems having a jump of the coefficients and the solution on the inner surface of body contact; the jump of the solution is proportional to the normal component of the flux. We develop approximate method for solving non-linear elliptic equations with imperfect-contact matching condition. Iterative processes with iterations on the inner boundary of the domain, where the coefficients and the solution are discontinuous, reduce the initial problem to solving non-linear boundary value problems in each contacting sub-domain of an integral domain at each iteration. By applying iteration method with a parameter, we reduce the non-linear problems in each of the sub-areas to linear ones. We implement iterative processes based on the upper relaxation method. Results from computations for model examples with known analytical solutions are presented in order to demonstrate the effectiveness of the proposed method. Computer experiments are included, using IDE Embarcadero Delphi.

Keywords

  • • contact problems
  • • non-linear elliptic equations
  • • discontinuous coefficients and solution
  • • finite-difference method
  • • iterative method
  • • imperfect-contact matching condition

References

  1. Samarskii A. A. Teoriya raznostnykh skhem [The theory of difference schemes]. Moscow: Nauka, 1983.
  2. Samarskii A. A., Andreev V. B. Raznostnye metody resheniya ellipticheskikh uravnenii [Difference methods for solving elliptic equations]. Moscow: Nauka, 1976.
  3. Wesseling P. An introduction to Multigrid Methods. Wiley, N. Y., 1991.
  4. Il'in V. P. Sib. matem. zhurn. 1996. Vol. 37. No. 1. Pp. 151–169.
  5. LeVeque R. J., Li Z. In SIAM J. Num. Anal., 31. 1994. Pp. 1019–1044.
  6. Iliev O. P. IMA Journal of Numerical Analysis. 2002. Vol. 22. No. 3. Pp. 391–406.
  7. Ewing R., Iliev O., Lazarov R. SIAM Journal on Scientific Computing. 2001. Vol. 23. No. 4. Pp. 1334–1350.
  8. Chernogorova T., Iliev O.Large-Scale Scientific Computations of Engineering and Environmental Problems II, Proc. of the Second Workshop on “Large-Scale Scientific Computations”, Sozopol, Bulgaria, June 2–6, 1999, Notes on Numerical Fluid Mechnanics, v. 73, Vieweg, 2000. Pp. 171–179.
  9. Chernogorova T., Ewing R., Iliev O., Lazarov R. Proc. of the Int. Workshop on Computational Physics: Fluid Flow and Transport in Porous Media (Z. Chen, R. Ewing and Z. Shi, Eds.), Lecture Notes in Physics, v. 552, Springer-Verlag, Heidelberg. 2000. Pp. 93–103.
  10. Lubyshev F. V., Fairuzov M. E. Matematicheskoe modelirovanie. 2000. Vol. 12. No. 3. Pp. 30–31.
  11. Lubyshev F. V., Fairuzov M. E., Galeeva G. Ya. Zhurnal SVMO, 2011. Vol. 13. No. 2. Pp. 36–46.
  12. Lubyshev F. V., Fairuzov M. E. Zhurnal SVMO. 2014. Vol. 16, No. 1. Pp. 89–105.
  13. Lubyshev F. V. Comp. Math. and Math. Physics. 2012. Vol. 52. No. 8. Pp. 1094–1114. DOI: 10.1134/S0965542512080088
  14. Lubyshev F. V., Manapova A. R., Fairuzov M. E. Comp. Math. and Math. Physics. 2014. Vol. 54. No. 11. Pp. 1700–1724. DOI: 10.7868/S0044466914110088
  15. Manapova A. R., Lubyshev F. V. Ufa Mathematical Journal. 2014. Vol. 6. No. 3. Pp. 69–84. DOI: 10.13108/2014-6-3-69
  16. Samarskii A. A., Nikolaev E. S. Metody resheniya setochnykh uravnenii [Methods of solving difference equations]. Moscow: Nauka, 1978.