VESTNIK
Bashkirskogo universiteta

RUSSIAN
ISSN 1998-4812

Archive | Volume 20, 2015, No. 3.

DEPENDENCE OF VAPOR COMPRESSION INSIDE CAVITATION BUBBLES IN WATER AND ACETONE ON THE PRESSURE OF LIQUID

Vestnik Bashkirskogo Universiteta. 2015. Vol. 20. No. 3. Pp. 807-812.
Aganin A. A.
Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of Sciences
2/31, Lobachevsky St., 420111 Kazan, Republic of Tatarstan, Russia.
Ilgamov M. A.
Institute of Mechanics, Ufa Science Centre, Russian Academy of Sciences
71 Oktyabrya Ave., 450054 Ufa, Republic of Bashkortostan, Russia.
Toporkov D. Yu.
Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of Sciences
2/31, Lobachevsky St., 420111 Kazan, Republic of Tatarstan, Russia.
Email: top.dmtr@gmail.com

Abstract

The features of strong vapor compression inside cavitation bubbles in water and acetone during their collapse are considered, depending on the liquid pressure in the range from 1 through 15 bar (the temperature of the liquid is 20 °C). Еhe full hydrodynamic model is used for both the vapor in the bubble and the liquid around it. It has been found that inside the bubble in acetone three scenarios of the vapor compression are successively implemented in this range. In the first scenario, the vapor is compressed nearly homogeneously. In the second and the third ones, the vapor compression is realized by the radially converging simple waves and shock waves, respectively. The third scenario (the shock-wave one) begins with the pressure of 3 bar. In the bubble in water, the vapor is compressed only nearly homogeneously over the whole range of the liquid pressure considered. In the interval from 3.5 through 15 bar, due to the shock waves, the degree of the strong vapor compression, which is characterized in the present paper by the magnitude of the maximum temperatures, pressures and densities attained at the boundary of a small central area with radius 250 nm, is much higher in the bubble in acetone than in the bubble in water.

Keywords

  • • acoustic cavitation
  • • bubble dynamics
  • • collapse of a bubble
  • • cumulation
  • • converging shock waves

References

  1. Moss W. C., Clarke D. B., Young D. A. Science. 1997. Vol. 276. Pp. 1398–1401.
  2. Nigmatulin R. I, Akhatov I. Sh., Topolnikov A. S., Bolotnova R. Kh., Vakhitova N. K., Lahey R. T. Physics of Fluid. 2005. Vol. 17. 107106.
  3. Bass A., Ruuth S. J., Camara C., Merriman B., Putterman S. Phys. Rev. Lett. 2008. Vol. 101. 234301.
  4. Putterman S. J., Weninger K. P. Annu. Rev. Fluid Mech. 2000. Vol. 32. Pp. 445–476.
  5. Galimov E. M., Kudin A. M. DAN. 2004. Vol. 395. No. 2. Pp. 187–191.
  6. Voropaev S. A., Shkinev V. M., Dnestrovskii A. Yu., Ponomareva E. A., Aro-nin A. S., Bondarev O. L., Strazdovskii V. V. DAN. 2012. Vol. 446. No. 4. Pp. 388–392.
  7. Nigmatulin R. I. Dinamika mnogofaznykh sred, t. 1 i 2 [Dynamics of multiphase media, vol. 1 and 2]. Moscow: Nauka, 1987.
  8. Nigmatulin R. I., Bolotnova R. Kh. Teplofizika vysokikh temperatur. 2011. Vol. 49. No. 2. Pp. 310–313.
  9. Nigmatulin R. I., Bolotnova R. Kh. DAN. 2007. Vol. 415, No. 5. Pp. 617–621.
  10. Aganin A. A. Int. J. Numer. Meth. Fluids. 2000. Vol. 33. Pp. 157–174.
  11. Il'gamov M. A. DAN. 2010. Vol. 433, No. 2. Pp. 178–181.
  12. Nigmatulin R. I., Aganin A. A., Toporkov D. Yu., Il'gamov M. A. DAN. 2014. Vol. 458. No. 3. Pp. 282–286.