VESTNIK
Bashkirskogo universiteta

RUSSIAN
ISSN 1998-4812

Archive | Volume 20, 2015, No. 3.

ELECTRICAL PROPERTIES OF HIGH-BOILING PETROLEUM FRACTIONS

Vestnik Bashkirskogo Universiteta. 2015. Vol. 20. No. 3. Pp. 826-831.
Petrov A. M.
Bashkir State University; Institute of Petroleum Refinery and Petrochemistry
32 Zaki Validi St., 450076 Ufa, Republic of Bashkortostan, Russia; 12 Iniciativnaya St., 450029 Ufa, Republic of Bashkortostan, Russia.
Email: petrovnanpchemistry@gmail.com
Dolomatov M. Yu.
Bashkir State University; Ufa State University of Economy and Service
145 Chernyshevsky St., 450078 Ufa, Republic of Bashkortostan, Russia.
Bakhtizin R. Z.
Bashkir State University
32 Zaki Validi St., 450076 Ufa, Republic of Bashkortostan, Russia.
Ryzhikov O. L.
Bashkir State University
32 Zaki Validi St., 450076 Ufa, Republic of Bashkortostan, Russia.
Khairudinov I. R.
Institute of Petroleum Refinery and Petrochemistry
12 Iniciativnaya St., 450029 Ufa, Republic of Bashkortostan, Russia.

Abstract

The features of the phase transition “dielectric-semiconductor” in the high-boiling hydrocarbon fraction were studied in this paper. The temperature dependences of the electrical conductivity of the high-boiling hydrocarbon fractions has a kink in the temperature range about 65-85oC, and tangent of the angle of dielectric losses increase after reaching 65-85oC. The impedance and reactance resistance of the high boiling fractions is decreasing on all temperature range from 25 to 145oC, but active resistance of the high boiling fractions has been decreasing only to 65oC and increases after reaching 85oC. All these facts confirm the author’s hypothesis that there is a phase transition from a state “dielectric” to state “semiconductor” in temperature range 65-85oC. The increase of the high-temperature hydrocarbon fractions conductivity provide by the generation of charge carriers - free radicals (spin), that are formed by the decoupling of weak carbon-carbon bonds, impaired by conjugation with aromatic rings. The energy gap of such bonds may reach 40 kJ/mol. The process of generating free radicals is invertible, as confirmed by the presence of the temperature hysteresis of conductivity. The existence of a stable free radical generating confirmed by EPR data - when temperature of the high-boiling hydrocarbon fractions samples is increasing, the concentration of the paramagnetic centers is increasing too. Generation of the stable radicals also provides a phase transition “dielectric-semiconductor” because the stable free radicals are strong electron acceptors and they are reducing the band gap of the material.

Keywords

  • • high-boiling hydrocarbon fractions
  • • multicomponent organic spin glasses
  • • dielectric
  • • dielectric permittivity
  • • impedance
  • • tangent of the angle of dielectric losses
  • • conductivity
  • • phase transition dielectric-semiconductor

References

  1. Sorokin V. S. Materialy i elementy elektronnoi tekhniki. Vol. 1. Provodniki, poluprovodniki, dielektriki [Materials and elements of electronic equipment. Volume 1. Conductors, semiconductors, dielectrics] / V. S. Sorokin, B. L. Antipov, M. P. Lazareva. Moscow: Akademiya, 2006.
  2. Dolomatov M. Yu. Elek-trotekhnicheskie i informatsionnye kompleksy i si-stemy. 2013. No. 3. Pp. 109–114.
  3. Dolomatov M. Yu. Asfal'to-smolistye oligomery. Primenenie i fiziko-khimicheskie svoistva [Asphalt-resinous oligomers. Application and physicochemical properties] / M. Yu. Dolomatov, S. V. Pestrikov, E. A. Yusupov, S. A. Alek-sandrova. Moscow: TsNIITEneftekhim. 1992.
  4. Dolomatov, M. Yu. Elektro-tekhnicheskie i informatsionnye kompleksy i sistemy. 2015. No. 1. Pp. 117–123.
  5. Dolomatov, M. Yu. Materialovedenie. 2015. No. 2. Pp. 15–18.
  6. Dolomatov M. Yu., Petrov A. M. Temperaturnye oso-bennosti elektroprovodnosti mnogokomponentnykh pa-ramagnitnykh uglevodorodnykh sistem. / Tez. dokl. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Innovatsii i perspektivy servisa». UGUES. 01.12.2014. Ufa: izd-vo UGUES, 2014. Pp. 114–115.
  7. Rudenskaya, I. M. Dorogi i mosty. 2009. No. 2. Pp. 278–294.
  8. Khoiberg, A. D. Bitumnye materialy [Bituminous materials]. Moscow: Khimiya, 1974.
  9. Evdokimova N. G. Neftegazo-voe delo. 2005.
  10. Evdokimova N. G. Bashkirskii khimicheskii zhurnal. 2012. No. 2. Pp. 75–80.
  11. Safieva R. Z. Fizikokhimiya nefti. Fiziko-khimicheskie osnovy tekhnologii pererabotki nefti [Tekst]: avto-ref. dis. na soisk. uchen. step. d-ra tekhn. nauk (05.17.07) / Safieva Ravilya Zagidullovna; RGU nefti i gaza im. I. M. Gubkina. Moscow: 1998.
  12. Sergienko S. R., Taimova B. A., Talalaev E. I. Vysoko-molekulyarnye neuglevodorodnye soedineniya nefti [Non-hydrocarbon high-molecular compounds of oil]. M: Nauka, 1979.
  13. Subbotin I. V. Internet-zhurnal «naukovedenie». 2012. No. 4. s. 1–9.
  14. Saal, R. N. J. Journal of the Institute of Petroleum. 1940. v. 26. p. 246–255.
  15. Sb. tr. Nauchno-tekhnicheskoi konferentsii «Neft' i gaz na starte XXI veka». Ufa, 22 noyabrya 2001 goda, otde-lenie nefti i gaza AN RB, pod. Red. Bakieva A. V. Moscow: Khimiya, 2001.
  16. Evdokimov I. N. Khimiya i tekhnologiya top-liv i masel. 2001. No. 1. Pp. 29–31.
  17. Unger F. G., Andreeva L. N. Fundamental'nye aspekty khimii nefti. Priroda smol i asfal'tenov [Fundamental aspects of petroleum chemistry. The nature of resins and asphaltenes]. Novosi-birsk. Nauka, 1995.
  18. Pokonova Yu. V. Khimiya vysokomolekulyarnykh soedine-nii nefti [Chemistry of high-molecular compounds of oil]. Leningrad. Izd-vo LGU, 1980.
  19. NI ELVIS II. Rukovodstvo pol'zovatelya. National Instrument, 2008. URL: ftp://ftp.ni.com/pub/branches/russia/ni_elvis/ni_elvis_2_user_guide.pdf
  20. Dolomatov, M. Yu. Neftepromyslovaya khimiya. Fiziko-khimicheskie osnovy napravlennogo podbora rastvori-telei asfal'to-smolistykh otlozhenii [Tekst]: Ucheb. Posobie / M. Yu. Dolomatov, A. G. Telin, M. A. Silin. Moscow: RGU nefti i gaza imeni I. M. Gubkina. 2011.